Task: Using the Creative Process, design a piece a work of art which illustrates your understanding and/or opinion of current events. Complete your artwork by applying multiple Elements of Art and Principles of Design. Examples of current events might include concepts such as *coronavirus, covid19, distance learning, social distancing, shelter in place* but may focus upon ANY OTHER current event.

<table>
<thead>
<tr>
<th>Creative Process</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Imagine – use your imagination to brainstorm ideas by asking questions, having conversations, and recording ideas.</td>
<td></td>
</tr>
<tr>
<td>2. Experiment – Arrange your ideas in a sketch or series of sketches.</td>
<td></td>
</tr>
<tr>
<td>3. Create – Assemble your plan into a final arrangement and complete work of art.</td>
<td></td>
</tr>
<tr>
<td>4. Reflect & Refine – Think about the process from idea to product. What would you do differently next time? What went well?</td>
<td></td>
</tr>
</tbody>
</table>

Discussion

With someone in your household, reflect upon your experience engaging the Creative Process and making your own original current event artwork.

- How did brainstorming and planning out your idea help with your success?
- What aspects of your artwork do you like? Why?
- What aspects of your artwork would you refine or change based upon your reflection? Why?
- How many Elements of Art or Principles of Design did you include?
- How and why do you think the Elements and Principles are helpful when creating art?

<table>
<thead>
<tr>
<th>Elements of Art</th>
<th>Principles of Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Line</td>
<td>1. Balance</td>
</tr>
<tr>
<td>2. Shape</td>
<td>2. Emphasis</td>
</tr>
<tr>
<td>3. Form</td>
<td>3. Movement</td>
</tr>
<tr>
<td>5. Space</td>
<td>5. Unity</td>
</tr>
<tr>
<td>6. Texture</td>
<td>6. Repetition</td>
</tr>
<tr>
<td></td>
<td>7. Proportion</td>
</tr>
<tr>
<td></td>
<td>8. Rhythm</td>
</tr>
<tr>
<td></td>
<td>9. Variety</td>
</tr>
<tr>
<td></td>
<td>10. Contrast</td>
</tr>
</tbody>
</table>

Optional

Connect with us! Share/talk about your design online and tag #dmpsdistanceart. If you know it, tag your school’s art department on Instagram. Hoyt Middle School: @hoyt.heart, Meredith Middle School: @meredith_visual_arts, Harding Middle School: @hardingartpack, Merrill Middle School: @mustang.studio
The US Constitution and the Universal Declaration of Human Rights

Learning Target: Compare the practices of the United States to the guidance of the UDHR.

Part 1: Read

In the United States, the Constitution and the Bill of Rights provide broad human rights protections. Many of the rights contained in the Constitution are equivalent to rights found in the UDHR, especially those related to political and civil liberties. In addition, the U.S. Supreme Court has identified fundamental rights not explicitly stated in the Constitution, such as the presumption of innocence in a criminal trial and freedom of movement. U.S. courts provide a remedy for people whose constitutional rights have been violated. The U.S. Congress also passes laws that protect constitutional rights and provide remedies for victims of human rights violations when court cases may be too costly or difficult. The most important of these domestic laws are those that prohibit discrimination, including discrimination based on race, gender, religion, or disability.

Part 2: Think/Reflect

Look back at the way you ranked your top rights from the Universal Declaration of Human Rights in the previous packet.

- Are there any missing from your list with the way the US Constitution overlaps with the UDHR? Check out the chart above.
- If so, what were they and why do you think they aren’t represented in the United States Constitution?

Part 3: Inform and Advise

Write a one page letter to inform a person of your choosing (teacher, friend, family member, lawmaker, etc) about how the US constitution compares to the UDHR. Be sure to provide answers to the following questions in your letter:

- **How does US policy (the Constitution) compare to the UDHR?**
 - What is similar and what is different?
- **How do you think the US should improve our alignment to the UDHR?**
 - Use specific examples of where the Constitution does not align to the UDHR or could be improved.
7th Grade Math Resources

Inequalities Summary (Source: https://im.kendallhunt.com)

We use inequalities to describe a range of numbers. In many places, you are allowed to get a driver’s license when you are at least 16 years old. When checking if someone is old enough to get a license, we want to know if their age is at least 16. If h is the age of a person, then we can check if they are allowed to get a driver’s license by checking if their age makes the inequality $h > 16$ (they are older than 16) or the equation $h = 16$ (they are 16) true. The symbol \geq, pronounced “greater than or equal to,” combines these two cases and we can just check if $h \geq 16$ (their age is greater than or equal to 16). The inequality $h \geq 16$ can be represented on a number line:

Which One Doesn’t Belong?

Choose an inequality graph that you don’t think belongs with the rest. Explain why. Can you pick another graph and give a different reason? Discuss with someone else if you’re able – there is no one right answer. It is all about the argument you provide!

Practice (Source: https://im.kendallhunt.com)

1. Graph the inequality $x > 5$ on the number line below.

List three values of x that make the inequality true.

2. For each inequality, find two values for x that make the inequality true and false.

<table>
<thead>
<tr>
<th>Inequality</th>
<th>Two values of x that make it TRUE</th>
<th>Two values of x that make it FALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x + 3 > 20$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x + 3 < 20$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$2x < 8$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$-2x < 8$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Here is an inequality: \(x + 3 < 7\).
 a. List at least 4 values for \(x\) that would make this inequality true.
 b. Plot those 4 values for \(x\) on this number line:

 [Number line with marked points]

 c. How are the solutions to the inequality \(x + 3 \leq 7\) different from the solutions to \(x + 3 < 7\)? Explain your reasoning.

4. Here is an inequality: \(-3x > 18\).
 a. List at least 4 values for \(x\) that would make this inequality true.
 b. Plot those 4 values for \(x\) on this number line:

 [Number line with marked points]

 c. How are the solutions to the inequality \(-3x \geq 18\) different from the solutions to \(-3x > 18\)? Explain your reasoning.

5. Write an inequality that could be represented by these number line graphs:

 [Number line graphs]

6. Inequality Puzzle (Source: https://www.openmiddle.com/)

 Using the digits 1 to 9 at most one time each, fill in the boxes to create a true inequality.

 \[
 \frac{\square}{\square} + \frac{\square}{\square} < \square < \frac{\square}{\square} + \frac{\square}{\square}
 \]
7. **More Equation Writing Practice**

Select all the stories that can be represented by this equation: \(3x + 1 = 7 \)

a. Andre studies 7 hours this week for school work on all of his classes. He spends 1 hour on English and an equal number of hours each on math, science, and history.

b. Lin spends $3 on 7 markers and a $1 pen.

c. Diego spends $1 on 7 stickers and 3 marbles.

d. Noah shares 7 grapes with 3 friends. He eats 1 and gives each friend the same number of grapes.

e. Elena spends $7 on 3 notebooks and a $1 pen.

Solve the equation and explain what it tells you about each of the stories you circled above.

8. Solve these equations. Show your thinking or explain it to someone else.

a. \(3x - 5 = 13 \)

b. \(21 = 3(x + 2) \)

c. \(\frac{1}{2}x + 11 = 4 \)

Using the digits 1 to 9 at most one time each, place a digit in each box to find the greatest possible solutions for \(x \).

\[
\square + \square = \square
\]

Once you have found what you think is the greatest possible value for \(x \), write a story that could be represented by your equation.
Explore Modeling

Below are listed things that students might do in a science class. Check off the things that are examples of using a model.

_____ A building a paper airplane
_____ B making an analogy (for example, the heart is like a pump)
_____ C observing a bird’s behavior at a bird feeder
_____ D developing a mathematical equation to solve a science problem
_____ E making a plant cell out of household materials
_____ F analyzing whale migration patterns with a computer program
_____ G building and testing a bridge made of toothpicks
_____ H drawing an electrical circuit
_____ I forming a mental image of molecules in the liquid state
_____ J demonstrating the day/night cycle with a globe and flashlight
_____ K dissecting a cow’s bone
_____ L watching a computer simulation of a hurricane
_____ M going on a field trip to the Grand Canyon
_____ N graphing the speed of a car
_____ O watching a live video of an active volcano
_____ P making a replica of a human heart out of clay
_____ Q looking at blood cells under a microscope

Explain your thinking. How did you decide whether something is a model?

Share this situation with your family. Listen for how their thinking is alike or different.

The best answer is that all but C, K, M, O, and Q are examples of using models. Flip to the next page to learn more about why.
Julious is unsure about the arrival of a small wave 5G cellular tower close to their balcony herb garden. (see May 11th page for a picture). Here is a model of how a 5G small wave cellular tower works.

Notice a model has three main things
1. Components- parts

2. Connections between and among components

3. Relationships to understand how the connections work or function. (Example: The main tower sends waves for a large area, the small and roof top towers get convert those to small waves beamed directly to the home, person, device etc.)

Directions: Draw a model of a box herb garden (see a picture of this in the previous week). Be sure to include all three parts. Show it to your guardian or send a picture to your teacher. See if they too can find all three things a model should have. Do they agree? What do they suggest your add or change?
Silly Story- Draw the comic

Read the short story below. It is about a gato (cat) and a perro (dog). Draw what you understand in the boxed. Use your packets from previous weeks to help with vocabulary.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
</tr>
<tr>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
</tr>
<tr>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
</tr>
<tr>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
</tr>
</tbody>
</table>

Este es Gato. Gato es inteligente, amable, y serio.

Este es Perro. Perro es cómico, amable, e inteligente.

Gato y Perro son amigos. Gato y Perro van a escuela Park Ave.

Gato y Perro van a la clase de arte. Gato y Perro pintan.

Gato pinta un bol de fruta en el papel.

Perro pinta la profesora en el papel.

¡CRAC!

¡Oh no! ¡Qué lio! What a mess!
Developing and Heritage Spanish

Logic Puzzle

Read the clues below. Use the grid to mark possible and impossible answers. Each student must have a different colored pants, shirt, pencil, and phone. (Example: A student with a red phone cannot have red pencil.)

<table>
<thead>
<tr>
<th>Pantalones negros</th>
<th>Pantalones azules</th>
<th>Pantalones verdes</th>
<th>Pantalones morados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camisa azul</td>
<td>Camisa verde</td>
<td>Camisa roja</td>
<td>Camisa amarilla</td>
</tr>
<tr>
<td>Lápiz negro</td>
<td>Lápiz anaranjado</td>
<td>Lápiz rojo</td>
<td>Lápiz amarillo</td>
</tr>
<tr>
<td>Teléfono verde</td>
<td>Teléfono anaranjado</td>
<td>Teléfono morado</td>
<td>Teléfono rojo</td>
</tr>
<tr>
<td>Teléfono rojo</td>
<td>Teléfono amarillo</td>
<td>Lápiz negro</td>
<td>Lápiz anaranjado</td>
</tr>
</tbody>
</table>

1. Cada estudiante tiene cuatro posesiones de cuatro colores diferentes (la camisa, el lápiz, el teléfono y los pantalones de cada estudiante son de colores diferentes).
2. Al estudiante que lleva la camisa azul no le gusta el color verde.
3. El estudiante que lleva los pantalones azules tiene un teléfono rojo.
4. El estudiante que tiene el teléfono anaranjado es el estudiante que lleva una camisa amarilla.
5. El estudiante que lleva una camisa verde no tiene un lápiz negro.
6. El estudiante que lleva pantalones morados tiene un lápiz anaranjado.

Logic Terms:
entre - between
ni - neither/nor
o - or
antes - before
después - after
que - than that
cada - each/every

Verbos:
llena - wears
tiene - has
gle gusta - likes
Reading Closely for Textual Details: “At the Pole”

This week we will continue to explore the Arctic through a new perspective. Did you know that the greater background knowledge a person has around a topic, the more complex or difficult texts they can process? Even if it is far above their reading level. So, let’s keep building up our understanding out this topic so we can dive into even more challenging texts in the future!

Learning Goal/s
- Students learn to use questions to guide their approach to, reading, and deeper analysis of texts.
- Students read and analyze informational texts.

Attending to Details in Different Formats: Facts and Figures

In 2013, two British adventurers recreated the trek across Antarctica from the original Scott plans. It may seem strange that in today’s modern world, explorers are trying to recreate a century old trek across the Arctic. Look at the images below and then reflect on why you think these adventurers would attempt to break old records.
South Pole Expeditions Then and Now: How Does Their Food and Gear Compare?

A new Antarctic expedition is retracing the 1911-1912 route of Captain Robert Scott.

James Owen
National Geographic, October 26, 2013

The plan: Four months, 1,800 miles (2,900 kilometers) on foot, in temperatures down to -58 Fahrenheit (-50 Celsius), along the same route to the South Pole that claimed the lives of British polar explorer Captain Robert Scott and his men more than a century ago.

That's what British polar adventurer Ben Saunders and teammate Tarka L'Herpiniere are facing in an Antarctic journey that will take them from Scott's historic hut on Ross Island, over the Ross Ice Shelf, up the massive Beardmore Glacier, and across the freezing Polar Plateau.

If successful, the Scott Expedition, which launches this weekend, will become the longest unsupported human-powered journey in polar history.

Polar travel has come a long way since Scott's day, of course. For a start, he didn't have freeze-proof laptops, electrolyte drinks, or a mobile satellite hub. Here's how the gear and food of the two South Pole expeditions compare.

Diet. The staple food of Scott's five-man party was pemmican, a mixture of dried beef and fat, to which water was added. Researchers have calculated that the team's rations, which also included pony meat and lots of biscuits, were 2,000 to 3,000 calories short of the daily intake necessary to keep up with the extreme physical demands.

By contrast, Saunders and L'Herpiniere will consume almost 6,000 calories a day—a combined total of 1.3 million calories for the trip. The largely freeze-dried menu includes porridge and cream for breakfast, energy and protein bar snacks washed down with hot carbohydrate and electrolyte drinks, and chicken curry with added fat for dinner.

Diet is the main difference between then and now, according to Saunders. "We've invested many years of trial and testing into customizing a diet that will give us the sustenance we need to cover the full 1,800 miles," he said.

Ian Stone, a researcher in polar history at the Scott Polar Research Institute in Cambridge, U.K., described the new expedition as "a hellish prospect."

And, he noted, since the trek won't have any support from others along the way, the pair can't accept so much as a cup of tea at the U.S. Amundsen-Scott South Pole research station, which now marks the South Pole, before they turn around.

Sleds and Weight. Saunders and L'Herpiniere will be hauling handmade carbon-fiber sleds with Kevlar bases. Lightweight yet tough enough to withstand banging into rock-solid ice, the sleds are specially designed so they can be shortened as the pair drops off supplies for the return trip.

Though Scott had wooden sleds, the outward journey as far as the Polar Plateau involved a mixture of transport: motorized sledges, as well as ponies and dogs for hauling loads. In fact, Scott's expedition wasn't unsupported.

"They started off with a large number of men who gradually went back to base having pulled most of the heavy loads, so the actual Pole party didn't have as much to pull," polar historian Stone noted.
Whereas Scott's South Pole team each dragged 200 pounds (91 kilograms), Saunders' and L'Herpiniere's sleds will start out carrying 440 pounds (200 kilograms) of weight. While benefiting from a century of innovation in polar equipment, "we're going to be hauling significantly heavier loads," Saunders said.

The duo has gone to extreme lengths to reduce weight—cutting off clothing labels, replacing metal zip-pullers with nylon loops, trimming the corners off freeze-dried food packets, drilling holes in toothbrush handles, and so on.

Skis. The Scott Expedition will be using skis that are designed for competition ski mountaineering. Significantly lighter and shorter than touring skis typically used for polar environments, they're also extremely strong. The skis have been customized by adding a nylon skin to the undersides to provide extra traction for the heavy loads.

Scott's team used wooden skis. Well, four of the five did, as Stone pointed out. The fifth member, Henry Bowers, was a last-minute inclusion to the South Pole party, despite not having his skis with him.

"The poor sod had to walk all the way from the top of the Beardmore Glacier to the South Pole and back," Stone said.

Not that the others were very proficient on skis, unlike the Norwegian team, led by Roald Amundsen, which beat Scott to the South Pole by four weeks.

"Amundsen's people were all consummate skiers," Stone added. Fortunately, so are Saunders and L'Herpiniere.

Clothing. Saunders and L'Herpiniere will be protected by high-tech mountaineering clothing with outer fabrics that have been specially tailored for the Antarctic's dry environment. All water is frozen or falls as snow, so a rainproof membrane isn't needed, Saunders explained. Breathability, however, is crucial—pulling a 440-pound (200-kilogram) sled generates an awful lot of heat, even at -49 Fahrenheit (-45 Celsius), he said.

Scott's South Pole expedition was kitted out by Burberry, whose polar garments consisted of wool and cotton. Amundsen's team also wore natural fur. "If you see a picture of Amundsen's expedition, they all look very furry, but Scott's expedition looks as if they're about to climb some peak in the [English] Lake District," Stone observed.

Communication. Once Scott's team was on the Polar Plateau, they were on their own with no means of communication. The story of their fateful journey was gleaned only after Scott's diary was retrieved from the tent in which the last survivors died.

Saunders and L'Herpiniere will stay connected and provide regular updates (including photos and videos) using laptops connected to a mobile satellite hub. The ultralight laptops are modified so they have no moving parts and can cope with being repeatedly frozen to at least -40 Fahrenheit (-40 Celsius).

Powered by portable solar panels that attach to the sleds or tent, the laptops also provide the luxury of watching pre-downloaded films in the evening.

"We've got a bit of a mix—everything from Breaking Bad to Love Actually," Saunders said.

"It's hard to know exactly what you're going to be in the mood for before you leave, so we've catered for all eventualities."

Want to explore more about modern Arctic exploration? Check out these sites.

- Check out the team’s blog located here: http://bensaunders.com/
- The US Amundsen-Scott South Pole Station supported by the National Science Foundation: https://www.nsf.gov/geo/opp/support/southp.jsp
Use the information above; create a SMART goal in your journal.

Examples:

- I will get 8 hours of sleep at least 4 days a week.
- I will cut down on my screen time before bed by reading a book 10 minutes.
- By the end of the month, I will have a regular sleep routine, including a bedtime.